
ournal

The Government of the Union of Myanmar
Ministry of Education

Department of Higher Education (Lower Myanmar)
and

Department of Higher Education (Upper Myanmar)

Universities

Research

Vol. 1, No.2 December, 2008.



Universities Research Journal 2008, V01. 1, No.2

Universities Research Journal 2008
Vol. 1, No.2

Editorial Board

Editors in Chief
Prof. Dr. Win Naing, Head of the Department of Geology, University of
Yangon
Prof. U Khin Aung Than, Head of the Department of Geology, University
of East Yangon .
U Ali Akaba Khan (a) U Tin Maung Htwe, Department of Geology,
University of Mandalay
Prof. Dr. Zaw Win, Head of the Department of Mathematic; University of
Yangon
Dr. Soe Soe Hlaing, Head of Mathematics Department, Yangon Institute of
Economics
Prof. Dr. Khin Aye Aye, Head of the Department of Mathematics,
University ofMandalay

Editors
Prof. Dr. Aye Ko Aung, Head of the Departmerit of Geology, University of
Dagon
Dr. Chit Sein, Head of the Department ofGeology, University ofHinthada
Prof. Ohn Myint, Head of the Department of Geology, University of
Maubin
Prof. Dr. Than Than Nu, Head of the Department of Geology, University of
Mandalay
Dr. Nyan Win, Head ofGeology Department, University of Loikaw
U Hla Myint, Head of Department of Geology, Shwebo Degree College
Assis Leet. Dr Khin Khin Lin. Head of the Department of Geology,
University of Bhamo



Universities Research Journal 2008, Vol. 1, No.2

Prof. Yi Yi Thein, Head of the Department of Mathematics, University of
Mawlamyine
Prof. Dr. Win Kyi, Head of the Department of Mathematics, Yangon
University ofDistance Education
Prof. Myint Ohn , Head of the Department of Mathematics, University of
Pathein
Prof. Toe Aung, Head of the Department of Mathematics, University of
Taungoo
Prof. Dr Vee Myint, Head of Department of Mathematics, University of
West Yangon
Dr. Hla Hla Kyi, Head of the Department of Mathematics, University of
Myeik
Prof. Nu Nu Naing, Head of the Department of Mathematics, University of
Magway
Prof. Nu Nu Sein, Head of the Department of Mathematics, University of
Monywa
Prof. Dr Hnin 00, . Head of the Department of Mathematics, University of
Yadanabon
Prof. Dr Kay Thi Tin, Head of the Department of Mathematics, Meiktila
Institute ofEconomics
Mai Mae Khin, Head of Department ofMathematics, University of Loikaw
Prof. 00 00 Myint, Head of the Department of Mathematics, University of
Lashio
Asso. Prof. Dr Than Than 00, Head of the Department of Mathematics,
University ofKyainge Tong



Universities Research Joumal2008, Vol. 1, No.2

Contents

Page

The Geology ofPhongum Razi Ranges Putao District, K.achin State 1
Hla Htay andAungKhin Soe

Preliminary report on the study ofthe rock units exposed along the 11
Mongla • Kengtung • Tarchileik road section, Eastern Shan State
Khin Khin Lin

Revision ofthe Stratigraphy and Age ofthe Early Devonian 31
Zebingyi Formation, Myanmar
Aye KoAung

NewMaterials of Stegolophodon (proboscidea, Mammalia) from 49
the Irrawaddy Formation, Myanmar
ChitSein and Tin Thein

NewMaterials of Tetraconodon malensis (Mammalia, Artiodactyla, 6S
Suidae) from the Middle Miocene of Central Myanmar
Thaung Htike, Zin Maung Maung Thein and Hnin Hnin Htay

Palaeoecological and Palaeogeographical Significance of the 77
Rugose Corals from the Middle Devonian "Maymyo Formation" in
Pyinoolwin Township
Khalng Khaing San

The Study of Folding in Calc-silicate Rocks ofPinle-in Area, 89
Mandalay Division
SawNgwe Khaing

,

A Study of Clay Minerals in the Maubin Area 103
Olm Myint. Thura Aung, Swe Zin Tham, Nay Soe, Htet HtetAung, ZizawQl' Win
Naing, Myo Min andHtin Lynn Aung

Tin-tungsten Mineralization ofZingyaik-Kadaik Area, Paung 119
Township, Mon State
Than Htoo Aung



Universities Research Journal 2008, Vol. 1, No.2

Page

An Appraisal for the Mineral Assemblages to define Mineral 133
Isograds on Paragneiss from Latha-Phayargnokto Area, Patheingyi
Township, Mandalay Division, Myanmar
Zaw Win Ko and Win Min Soe

Petrology ofDevonian Strata in Naungcho Area, Naungcho 147
Township
Thein Htike Swe, Yan Naing Htun andNyan Win

Microbialites in the Thitsipin Limestone, Linwe-Kyauktaw Area, 163
Yengan Township, Southern Shan State
Khin Khin Lin

Stability ofTwo-Level Difference Method for PDE 173
Soe Soe Hlaing

Finite Difference Method for Elliptic Partial Differential Equation 193
Win WinEi

Numerical Approximations for Burgers Equation 203
SuSuAung

Use ofFinite Element Methods for Dirichlet Boundary Value 213
Problem
Khin Htay Kyi

Numerical Method for A Mathematical Model ofA Suspension 231
Bridge
Soe Soe Aye

Propagation Property for Nonlinear Double-Degenerate Parabolic 239
Equation in Multi-Dimension
Khin Than Sint

A Study on Steady State Drift-Diffusion Model for Semiconductors 241
Khin Thi

Numerical Schemes for the Euler Equations 261
Win WinNwe



Universities Research Journal 2008, Vol. 1, No.2

Page

Numerical Approximations ofOne-Dimensional Stationary Drift- 271
Diffusion Model for Semiconductor
Cho Sandar

Characterizing the Degree Sequences of Signed Cycles and Signed 285
Stars
Hla H/a Myint

Applications ofEulerian Path and Tour 295
SandarMytnt, Win Win Mar and Yi Myint

Spanning Trees with at most k Leaves in a K1,4-free graph 307
AungKyaw

Arc-Disjoint Path Pair (APP) Problem 323
Nang Kham Maing

Characterization ofa Bipartite Graph and Its Hamiltonicity 337
Shwin Seinn

A Study on Optimal Control ofRice Production in Taungoo Area 349
Aye Ko, Thin Thin Myat and Mi Mi Than

Proximal Method for Equilibrium Problems 367
HlaHlaKyi

The Weighted Locally Convex Spaces ofMeasurable Functions on 373
Np Family And Continutous Functions on Nachbin Family
Saw Marlar Aung and KyiHtin Paw



Universities Research Journal 2008, Vol. I, No.2

A Study on Steady State Drift-Diffusion Model for
Semiconductors

Khin Thi

Abstract

In this paper we discuss the derivation of Drift-Diffusion Model by using
Maxwell's equations, Poisson's equation and continuity equations for
semiconductors. We also study the existence and uniqueness of solution
in steady state.

Key words: continuity; drift-diffusion equation; existence; uniqueness

Introduction

The drift-diffusion equations are jhe most widely used models to
describe semiconductor devices today. The interest in the drift-diffusion
model is to replace as much laboratory testing as possible by numerical
simulation in order to minimize costs. This model may be obtained by
taking zeroth order moment of Boltzmann Transport equation and adjoining
the Poisson equation.

We shall derive the basic mathematical model for the
electrodynamic behaviour of semiconductor devices. A semiconductor
device occupies a bounded, simply connected domain in R3 which we
denote by n.

Continuity Equations

Applying Maxwell's Equations, we have

O=divJ+~.at (1)

• •mvanant:

We split the conduction current density J into electron current
density In and hole current density Jp:

J = In + Jp• (2)

For the following we assume that the doping profile is time-

~=O. (3)
at

Assistant Lecturer, Dr, Department ofMathematics, University ofMonywa
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(4)

By using equations Maxwell's and.Poisson's Equations, we have:

-divJ -q Op = divJ _qE!!.. x en.
p at n at'

We obtain equations for the electron and hole current density by
setting both sides of (4) equal to a quantity, which we write as qR:

diVJn-q~=qR, xen , (5)

div.l; +q op = -qR, xe n . (6)at
By inspection of the left hand side of Equations (5), (6), the quantity

R can be interpreted as the difference of the rate at which electron-hole
carrier pairs recombine and the rate at which they are generated in the
semiconductor. Therefore we call R the recombination-generation rate.

We identify the two main sources for current flow in semiconductor
devices:

(a) diffusion of the electron and hole ensembles with resulting diffusion
current densities

(b) drift of electrons and holds caused by the electric field as deriving force
with resulting drift current densities .J~ft , J~ft .

The principal assumption to be used is that the electron and hole
current flows are determined by linearly superimposing the diffusion and
the drift processes, i.e.

J =Jdiff +Jdrifl
" " n'

(7)

Electrons and holes diffuse from regions of high concentration into
regions of low concentration. By Fourier's law, the diffusion flux densities
are proportional to the gradients of the corresponding particle concentration.
The diffusion current densities are obtained by multiplying the diffusion
fluxes with the charge per particle, which is -q for electrons and +q for
holes:

(8)
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(9)

249

The signs of the right hand sides are chosen such that the diffusion
coefficients D, and Dp ar.e positive. The electric field driven drift current
densities are defined as the products of the charge per particle, the
corresponding carrier concentration and the average drift velocity, denoted
by v: for electron and v~ for holes:

Jdrtft = -qnvd
n n (10)

(11 )

The drift direction of the carriers are assumed to be parallel to the
electric field, the drift of holes has the same orientation as the electric field,
while the drift of electrons has opposite orientation. The wift velocities are
proportional to the electric field at moderate field strengths

(12)

where the positive coefficients J.1n, J.!p are called electron and hole
mobility respectively.

By inserting Equation (12) into Equations (10-11) and by using (7­
9) we obtain the current relations:

In= qDngrad n + qJ.1n nE, xeQ (13)

Jp=-qDp grad p + qJ.!p pE, xen. (14)

Usually, the diffusion coefficients Dn and Dp are related to the
mobilities J.!n. J.!p by Einstein's relations:

Dn= UTJ.!n, Dp = UTJ.!p

where UT stands for the thermal voltage given by

U; = kBT . kB denotes Boltzmann's constant and T the device temperature.
q

Existence and Uniqueness of the Stationary Drift-Diffusion Equations

We consider the system ofpartial differential equations

(a) divte gradV)=q(n- p-C)
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(c) (15)

(d) I n=q(Dngrad n- f-ln n grad V)

(e) Jp=q(-Dpgrad P- f-lpP grad V),

where 8 is the permittivity constant whose approximate value in silicon is

10-12 As V-I em". q is the elementary charge whose value is approximately
10-19 As. We assume the device given by a domain n c Rd with <;I =1, 2 or
3. The boundary an of the domain n is assumed to consist of a Dirichlet
part an Dand a Neumann part an N:

an= anD u ea., ta; nanN ={}. (16)

The Dirichlet part anD of the boundary to Ohmic contacts. There
the potential V and the concentrations n and p are prescribed. At Ohmic
contacts the space charge, given by the right-hand side of (15)(a) vanishes.
So

n-p-C=O for x e anD (17)

holds. Furthermore the system is in thermal equilibrium there, which is
expressed by the relation

np = ni
2 for x e anD (18)

nj is the intrinsic density ( :: 1010 em? in silicon at room temperature).

Moreover, the quasi Fermi levels ifln and iflp ' given by

n
(a) ifln =V- Dr In(-) ,

n·I (19)

Assume the values of the applied voltage at Ohmic contacts. Here
Dr denotes the thermal voltage which, at room temperature, is roughly
0.025 V. F-rom the conditions (17)-(19) the boundary value for V, nand p
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(21)

can be uniquely determined. Inserting (1~) into (17) give one quadratic
equation for n and p each, which have unique positive solutions given by

(a)n(x,t) = nD(x) =1.(C(x)+~C(xi +4n;)
2

(b) p(x,t)= PD(X)=1.(-C(x)+~C(X)2+4nj

2
)

2

for x E anD (20)

(l9)gives the boundary values for the potential V :

(c) V(x,t)= VD(x,t)=U(x,t)+ ~j(x)

nD(x)
~j(x)=UTLn( ) for x E anD

n;

U (x,t) denotes the applied potential. We implie that tPn equal rPp at Ohmic

contacts. The Neumann parts anN of the boundary model insulating or

artificial surfaces. Thus a zero current flow and a zero electric field in the
normal direction are prescribed.

BV
(a) a;(x,t)(:=gradV.v)=o

(b) In(x,t) . v = 0,

(c) Jp(x,t). y= 0 for x E anN

Here v will always denote the unit outward normal vector on the boundary
an . In addition the concentrations of the free carriers n and p at time t = 0
are prescribed.

n(x, 0) = nI (x), p(x, 0) = pI (x) for x E Q (22)

hold and the complete initial boundary value problem is given by the
equations (15), the boundary conditions (20), (21) and the initial conditions
(22).

For the recombination rate R in (15) (b) (c) we will only consider the
Shockley Read Hall term which is of the form

(23)
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(24)

Here, again, n, denotes the intrinsinc density. Til and Tp are the lifetimes of

electrons and holes respectively.

The drift diffusion Equations (15) are considered at a stationary state
and that the time derivatives Otn and OtP are neglected.

We will treat the drift diffusion equations in an unsealed form for
the moment. So we consider the system

(a) E~V = q(n - p - C(x))

(b) div I n= qR,

(c) In= q(Dngrad n - flnn grad V)

(d) div Jp =-qR,

(e) Jp= q(-Dpgrad p- flpP grad V).

Equation (15) have the.disadvantage of containing the convection terms -n
grad V and -p grad V which prohibit the use of the maximum principle in a
simple way. If the Einstein relations

Dn=UTfln, Dp =UTflp (25)

can be assumed, with UT the thermal voltage, it is beneficial to change from
the concentrations n and p to the so called Slotboom variables u and v given
by

v

(b) p = nie UT v .

The current relations then become
v

(a) In = qUTniflneUTgradu ,

v-
(b) Jp= -qUTniflpeUT gradv .

(26)

(27)

After inserting the current densities In and Jp into the continuity
Equations (24) (b, d) one obtains the elliptic system
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v v- -
(a) &A V = qnj(eUTu-eUYv)-qC(x)

v
(b) Urn j div(Jlneuy grad u) =R (28)

v
(c) Urn j div(JlpeuTgrad v) = R .

In this form the continuity Equations (28) (b, c) are self adjoint. In
the Slotboom variables u and v the boundary at artificial or insulating
surfaces becomes pure Neumann conditions

BV =~ = Ov =0. (29)
Ov an" Ov an" Ov an"

For Ohmic constants we obtain from (28) (a, b, c)

vlaq, = volaq, , ulaq, = uolaq, , vlaq, = volaq, (30)

-~ -~
with Uo = nile u,no and vo = nile u,Po' Since n and p represent physical
concentrations, the Slotboom variables u and v have to remain positive.

(31)•

Existence theorems for the Problem (28) - (30) usually employ the
Schauder Fixed Point Theorem. The construction of the fixed point map
depends on the form of the recombination rate, the mobilities, the geometry
and so on. We will use some simplifying assumptions. We will consider the
Shockley Read Hall recombination term only. So after changing variables to
(Y, u, v) the recombination rate R in (28) is of the form

uv-1
R = nj v v

- --
'tp(euTu+1)+'t

n(e uTv+1)

We assume that the mobilities Jln and Jlp are uniformly bounded
functions of positions only and that

O<Jln :5Jln(x):5Jln' O<~p <Jlp(x)<jIp, "i/x E n (32)

hold. Furthermore we will take the boundary on and the boundary data \jIo,
Uo, and Vo in (30) to be as smooth as necessary. A condition of the form
(32) is necessary, to guarantee the uniform ellipticity of the continuity
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equations. Therefore most existence proofs do assume an a priori bound on
the mobilities even when modeling them as dependent on the field - grad V.
The fixed point map is constructed such that its evaluation only involves the
solution of semilinear or linear .scalar boundary value problems. Let G be
given by G(\1o, vo) = (ui, v.). where (ui, vi) is computed from (\10, vo) as
follows.

Step 1: Solve Poisson's equation
v v- -

-r.tJ.V + qn, (eUTu, -e uTVO)-qC(x) = 0

(33)

for V = V i­

Step 2: Solve

au
(b) - =0, ulOQ, =uoIOQ,' (34)

Ovao,;

for u = ur.

Step 3: Solve

-0- .

(35)

for v v vi.

By solving the boundary value problem (33)-(35), a fixed point of
the nonlinear operator G is a weak solution of the coupled problem (28)­
(30). The existence of such a fixed point is established by showing that the
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(36)

map G is completely continuous and by applying the Schauder Fixed Point
Theorem.

Ofcourse, for this approach one has to choose and appropriate space
for defining G. The map G is well defined; that means that the involved
boundary value problems are uniquely solvable. All three problems (33)­
(35) can be written in the general form

-div(a(x) grad w) + f(x, w) = 0, xen

Ow
- =0, wl~ =wDI~
Ovon..

where w takes the place of Y, u and v respectively. The coefficient a(x) in

(36) is either the constant I; or equal to Iln ev, or IIp e v, •

In any case it is uniformly bounded away from zero if Iln and IIp are
and if '1'1 is bounded, which makes the semilinear Equation (36) uniformly
elliptic. f(x, w) is monotone increasing function of w in all three cases (33)
- (35) if Uo and Vo are positive. In (34) and (35) f is linear in w. The
existence of a unique solution of semilinear partial differential equations of
the type as in (36) is, under certain assumptions, a standard result in the
theory of elliptic partial differential equations. The coefficient a(x) in
solution w(x) will lie in the intersection of the spaces L'" (n) and HI(n).

HI(n) is the space of functions which are square integrable and

whose gradient is square integrable as well. So f(W(X)2 +IVw(x)1
2
) dx < 00

n
holds.

Lemma:

Let the following assumption hold:

(AI) The function f(x,w) is monotonically increasing in w for all xen

(A2) a(x) e L'" (n) and a(x) > a >0 holds for some constant a .

(A3) There exist functions g (w) and g(w) such that g (w) <f(x,w) <-
g(w) hold 'V x en, 'Vw.

(At) There exist solutions Vj and wof g( w) = 0 and g(Vj) = O.
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Then there exists a unique solutionw of the problem (36) in

HI(O) (\ L'" (0).

This solution satisfies Yf < w(x) < iN

~=min{~wo ' Yf}, w e max Isupwg,Yf}.
o anD

(37)

By using lemma We can now, by showing that the map G is well defined
and completely continuous employ 1he Schauder theorem to establish the
existence ofa weak solution to (36)

Theorm. Let K ~1 be a constant satisfying
1

- <uo(x), vo(x):SK Vx E 000 ,
K

Then the problem
v v- -

(a) f::a V= qnj(eUTu-eUTv)-qC(x)

v

(b) UTnjdiv(lloeuTgradu) = R

v-
(c) UTn j div(llpeUTgrad v) = R

(d)
fJV au

=-

(e) VICQ, = volCQ,' ulCQ, = uolCQ, , vlCQ, = volCQ,

has a solution (V ., u", v·) E (BI(O) (\ L""(0»3 which satisfies the L""­

estimate ..!..- :S u(x), vex) :S K in n,
K

min W!VO,UTln[2~j (~+(~2+4n~)~] <Vex) (38)

V(x):Smax suPVO,UTln[ K (C+(C2+4n~)~] inn
iG> 2n j
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where C < C(x) <C holds.

Proof:

First we choose an appropriate space for the fixed point map G. Let
N be defined by

N = {(u, v) E L2(Q): ..!.- < u, v S K a.e. in Q}, (39)
K

where L2(Q) is the space of square integrable functions; i.e., the space of
functions (u, v) for which

fl u(x), v(x) 12 dx < co
n

holds. We show that G maps N into itself and is completely continuous.
Given (Uo, yo) E N, by virtue of Lemma, there exists a solution VI of (33).
g and gcan be chosen as-

--qC (40)

-qC .

Splving g(V) = 0 and g(Y) = 0 gives-

(41)

v
e u,
--+1

K

y = u, In[~(C+(C2 +4n:)&]
2n.

I

V= u, In[ 1 (C+(C2+4n:)&]
2Kn.

I

Applying Lemma to equation (2.20) we use

Ku-l



258 Universities Research Journal 2008, Vol. I, No.2

(42)

where V:S Vt(x) < V holds, and obtain ~ = ~. Analogously we obtain

ii = K which implies

1
- :S u l (x) < K .
K

In the same way we obtain ~ < VI (x) :S K. Thus, G maps N into itself. The
K

continuity of N is a simple consequence of the well posedness of uniformly
elliptic boundary value problems. On the other hand the continuous
dependence of UI and VI on the data of the corresponding boundary value
problems implies

IIUllh, 2,0 + IIVIIh. 2,0 :S F(IIUoIl2,O, IIvolb,o, lIuolh,2, 0, IIvolh. 2, 0)
(43)

for some positive and continuous function F. Here, the symbols 11-112,0 and
11,111,2,0 denote the norms in L2(Q) and HI(Q). So

I

II f Ib,n= (11 f(x) 12dxr'
I

II f Ib.n= (1(1 f(x) 12 +IV'f(x) 12dxr
holds. Thus lIullh. 2, 0 + Ijvllh. 2, 0 < const holds for all (Uo, vo) in N, The
Rellich Kondrachov Theorem) now assures that G(N) is pre-compact in
(L2(Q)i. This, together with the continuity of G, gives complete continuity
and the Schauder Fixed Point Theorem assures the existence of a fixed
point of G which is a solution of (28)-(30).
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